NEXTFLEX® Combo-Seq™ mRNA/miRNA Automation Kit

NOVA-5139-53

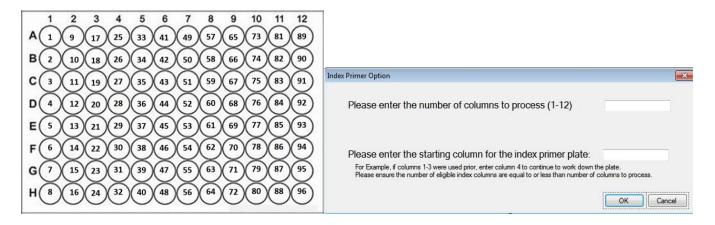
NEXTFLEX® Combo-Seq™ mRNA/miRNA Automation Kit

Product Overview

The NEXTFLEX® Combo-Seq™ mRNA/miRNA Automation Kit enables the user to generate up to 96 combined mRNA and microRNA libraries from 5 ng − 100 ng of total RNA, without the need for rRNA depletion or poly(A) selection on the PerkinElmer® Sciclone® G3 NGSx workstation. The workflow relies on a novel technique in which poly(A)-tailed RNA species are selectively reverse transcribed then sheared by RNase H into fragments of a useful length. The mRNA fragments are subsequently processed along with the small RNAs present in the sample. Libraries prepared with this kit are directional (strand-specific) and compatible with Illumina® sequencers.

NEXTFLEX® Combo-Seq[™] mRNA/miRNA sequencing libraries contain Unique Dual Indices (UDIs), which are designed to specifically address the index-hopping phenomenon associated with Illumina® platforms utilizing a patterned flow cell. These UDIs prevent mis-assigned reads from appearing in final datasets, allowing for the highest assurance of data integrity.

Materials and Reagents


Provided Reagents

Contents, Storage and Shelf Life

The NEXTFLEX® Combo-Seq™ mRNA/miRNA Automation Kit contains enough material to prepare 96 prepare 96 libraries using the PerkinElmer® Sciclone® G3 NGSx workstation for Illumina® sequencing. The volumes provided support a single, 96-samples run or two, 48-sample runs. The shelf life of all reagents is at least 6 months when stored properly. All components can safely be stored at -20°C, except: NEXTFLEX® Adapter Depletion Solution, Resuspension Buffer, and Nuclease-free Water, which can be stored at room temperature, and NEXTFLEX® Cleanup Beads, which should be stored at 4°C.

Kit Contents	Cap Color	Amount	Storage Temp.
NEXTFLEX® Anchored Oligo(dT) Primer	PINK CAP	227 μL	-20°C
RT/RNase H Annealing Buffer	PINK CAP	227 μL	-20°C
RT/RNase H Reaction Buffer	PINK CAP	578 μL	-20°C
NEXTFLEX® Combo-Seq™ Reverse Transcriptase	PINK CAP	378 μL	-20°C
NEXTFLEX® Thermostable RNase H	PINK CAP	608 μL	-20°C
NEXTFLEX® PAP Buffer	RED CAP	578 μL	-20°C
NEXTFLEX® Poly(A)	RED CAP	145 μL	-20°C
NEXTFLEX® tRNA/YRNA Blocker	RED CAP	131 μL	-20°C
Adapter Depletion Solution	WHITE CAP	5 mL	Room Temp.
NEXTFLEX® Combo-Seq [™] 5' Ligation Buffer	LIGHT PURPLE CAP	854 μL	-20°C
NEXTFLEX® Combo-Seq [™] 5′ 4N Adapter	LIGHT PURPLE CAP	197 μL	-20°C
NEXTFLEX® 5' Ligation Enzyme Mix	LIGHT PURPLE CAP	263 μL	-20°C
NEXTFLEX® Combo-Seq™ RT Buffer	BLUE CAP	(2) 757 μL	-20°C
NEXTFLEX® UDI Barcoded Primer Mix*	GREEN CAP	6 μL each*	-20°C
NEXTFLEX® PCR Master Mix	GREEN CAP	832 μL	-20°C
Resuspension Buffer	YELLOW CAP	(2) 1.5 mL	Room Temp.
Nuclease-free Water	WHITE CAP	10 mL	Room Temp.
NEXTFLEX® Cleanup Beads	WHITE CAP	16 mL	4°C

* Pre-plated, see figure below

Pre-plated NEXTFLEX® UDI Barcoded PCR Primer Plate

(left) Barcode ID for the provided plate. Sequences can be found at the bottom of this document. Barcodes will be added column-wise to the PCR reaction. Any unused columns can be used in a subsequent run by selecting the starting column from an interface (right) in the Maestro software.

Sciclone® NGS Hardware, Software, Applications and Consumables

Required Hardware

Part	Vendor/Part Number
Sciclone® NGS Workstation	PerkinElmer®
Inheco 384-well plate adapter	NGS Sciclone® accessory CLS 100853
Inheco 96-well adapters (2)	NGS Sciclone® accessory CLS 128372
Inheco 96-well adapter/shaker	NGS Sciclone® accessory CLS 100852
Agencourt® 96 ring magnet	Agencourt® CLS128316
Spacer Assembly for Agencourt® 96 ring magnet	Agencourt® CLS128316

Required Software

Maestro 6.3 software or later

Required Consumables

Part No.	Vendor / Part Number	Part	Quantity Needed for 96 samples
6008870	PerkinElmer [®]	Bio-Rad® Hard-Shell® 96 Well PCR Plate, Full Skirt	15
111426	PerkinElmer®	Pipette Tip, 150 μL, Art, Box, 10-96 Sterile Racks	33
6008880	PerkinElmer®	Deepwell-96 POS, Square 2.0 mL well, Polypropylene, Seahorse	2
6008700	PerkinElmer®	Reservoir-Deepwell, 12 column, 21mL	3
6000030	PerkinElmer®	946 Lid-Universal, Robotic friendly, Polystyrene	9
6008890	PerkinElmer®	Microplate-384 well, Round bottom, Polypropylene, pack of 10	1

Required Reagents Not Provided

- Vapor-Lock Qiagen; Cat No./ID: 981611
- 5 ng 100 ng total RNA in up to 11 μL Nuclease-free Water
- Human Universal RNA (Biochain # R4234565) or other total RNA, as a control (optional)
- Isopropanol
- 80% Ethanol, freshly prepared
- Adhesive PCR Plate Seal (Bio-Rad, Cat # MSB1001)
- Thermal cycler compatible with Bio-Rad® Hard Shell Plates (see Bio-Rad website for recommendations)
- Vortex

Provided Maestro Applications

Application Name	NEXTFLEX® Combo-Seq Steps	Approximate Run Time (Including offline Incubations and PCR)			
	Step A – Reverse Transcription and RNase H Digestion	1 hour, 40 minutes			
Library Prep 1	Step B - Polyadenylation	1 hour, 45 minutes			
Elistary Frep T	Step C $-$ 5' 4N Adapter Ligation	1 hour			
	Step D — First Strand Synthesis	1 hour, 30 minutes			
Library Prep 2	Step E — Barcoded PCR Setup	20-45 minutes (depending on # of cycles)			
Post-PCR Size Selection Cleanup	Step F — Size Selection & Cleanup	1 hour			

Warnings and Precautions

- Ensure that all pipette tips, microcentrifuge tubes, and other consumables are RNase-free.
- Take extreme care to keep an RNase-free workspace. It is recommended that an RNase decontamination solution such as RNase-Zap® (SigmaAldrich) be used on gloves and workspace surfaces before making mastermixes.
- DTT in buffers may precipitate after freezing. If precipitate is seen, vortex buffer for 1 2 minutes or until the precipitate is in solution. The performance of the buffer is not affected once the precipitate is in solution.
- Vortex and centrifuge each component prior to use, in order to ensure material has not lodged in the cap or side of the tube.
- Do not remove enzymes from -20°C until immediately before use; return to -20°C immediately after use.
- Do not freeze NEXTFLEX® Cleanup Beads. NEXTFLEX® Cleanup Beads should be stored at 4°C and brought to room temperature before use. Vortex and ensure homogenous appearance before use.
- Except where specified, thermal cycling should be performed with a heated lid.

Starting Material

The NEXTFLEX® Combo-Seq $^{\text{M}}$ mRNA/miRNA Automation Kit is designed for use with 5 ng − 100 ng of total RNA. Upstream depletion of ribosomal RNA is neither required nor recommended. RNA should be free of DNA, divalent cations, salts such as guanidinium salts, organics such as phenol, reducing agents such as DTT, and chelators such as EDTA. Best results are obtained using high-quality starting material with a RIN \geq 8. The use of degraded RNA will result in a low proportion of mRNA-mapping reads in the sequencing library.

Some total RNA extraction and purification methods may not efficiently isolate small RNAs. Users should verify that their extraction and purification method isolates total RNA including small RNAs such as miRNA.

The NEXTFLEX® Combo-Seq™ mRNA/miRNA Kit includes an optional reagent designed to deplete tRNA fragments and Y RNA fragments which are abundant in many types of input RNA. Users who wish to deplete these RNA fragments should add 1 µL of NEXTFLEX® tRNA/YRNA Blocker prior to 5′ ligation, as indicated in Steps B-11 and B-14.

If the user is performing the procedure for the first time, we recommend including a positive control such as 20 ng of total RNA (Biochain R4234565 or similar).

Using Qiagen® Vapor-Lock™ barrier

Qiagen® Vapor-Lock™ barrier must be used during the Library Prep 1 application. Qiagen® Vapor-Lock™ barrier should be manually applied directly to the top of the samples by pipetting prior to beginning the run. Qiagen® Vapor-Lock™ barrier will be removed during the bead cleanup at the end of Step A and will not inhibit any downstream applications.

Offline Steps

Two steps are done offline in a thermal cycler: Step B – Polyadenylation and Step E – Library Amplification.

Step ID	Condition
Step B - Polyadenlyation	15 minutes — 37°C 20 minutes — 90°C < 5 minutes — 4°C
Step E – PCR	30 sec - 98°C 10 sec - 98°C 20 sec - 65°C 15 sec - 72°C 2 min - 72°C Hold - 4°C
Input RNA Amount	# of PCR Cycles
100 ng	13
20 ng	16
10 ng	17
5 ng	18

Appendix-PCR Primer Sequences

N	EXTFLEX®	Sequence
NEXTFLEX® An	chored Oligo(dT) Primer	TTTTTTTTTTTTTTVN
NEXTFLEX® Cor	mbo-Seq™ 5′ 4N Adapter	3'ddNVTTTTTTTT5'5'rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrCrNrNrNrN3'
	icluded in NEXTFLEX® -Seq™ RT Buffer)	TCCTTGGCACCCGAGAATTCCATTTTTTTTTTTTTTTTT
	1 – P7 (included in DI Barcoded Primer Mix)	CAAGCAGAAGACGGCATACGAGAT <u>XXXXXXXX</u> ¹GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA
	⁻ 2 – P5 (included in DI Barcoded Primer Mix)	AATGATACGGCGACCACCGAGATCTACAC <u>XXXXXXXX</u> 2ACACGTTCAGAGTTCTACAGTCCGA

XXXXXXXX1 denotes the P7 index region of the primer. The index sequences that are added to each barcoded library via PCR are listed below. Note: UDI primer 1 contains the reverse complement of the sequence listed under P7 Index. The final library, however, will contain the P7 Index listed below (see also Fig. 2), and the sequencer will read the index as listed below.

XXXXXXXX² denotes the P5 index region of the primer. The index sequences that are added to each barcoded library via PCR are listed below.

NEXTFLEX® Combo-seq™ mRNA/miRNA UDI primers

NEXTFLEX®	i7 sequences	i5 sequences	NEXTFLEX [©]	i7 sequences	i5 sequences	NEXTFLEX®	i7 sequences	i5 sequences	NEX	TFLEX®	i7 sequences	i5 sequences
UDI 1	AAGATCAT	AATAATAG	UDI 25	AAGAGTTG	AATATTGA	UDI 49	AAGACTGT	AATATCTG	U	DI 73	AAGTACAG	AATAGCAA
UDI 2	TGCTATTC	TTAGTAGC	UDI 26	TTATACAA	TTCTCAAT	UDI 50	TTCGGAAC	TTAGCTAA	U	DI 74	TGAATGGA	TTCGCTTG
UDI 3	GACGTGTC	TGCGTGGC	UDI 27	GATTAGGA	GTGGAACG	UDI 51	GAAGATCG	GCTTCTTG	U	DI 75	TCGAAGCT	GCCACGCG
UDI 4	CGGTAGTC	ACCAATTG	UDI 28	CTCTGGCG	AGTTACGG	UDI 52	CGGAGGCT	CGTTATAT	U	DI 76	CTCATAAT	GCGCTGAC
UDI 5	GACAGCAG	CTACTGGT	UDI 29	GATACCTA	GCGAGATC	UDI 53	GAAGAAGC	TGCGCGAT	U	DI 77	TCTTAGGC	TACACAAC
UDI 6	CTTGTACA	AGCAGAGT	UDI 30	CGCGTATC	AGCGTACG	UDI 54	CTGCGAAG	CGACATGG	U	DI 78	CTCTACAC	GTATGGTC
UDI 7	GACAAGTG	CATTATCG	UDI 31	GATACGAT	CTTGGTAC	UDI 55	GAATCTGA	GAAGCCTC	U	DI 79	TCTAGGTT	AGTCACAA
UDI 8	CTCGCCTT	GTGCAGTC	UDI 32	CTGGAGCT	CGCAGCTG	UDI 56	CTGCGGTA	GATTGGAG	U	DI 80	CGTTCTGC	CCGCTAAT
UDI 9	GAGCGTCA	GTTCACAC	UDI 33	GAACGATA	ACGGCACA	UDI 57	GTCTTGCT	GTCTATCG	U	DI 81	TCACTACG	CCTAGTGG
UDI 10	CGCGCTCG	CCGCATAC	UDI 34	CGGTCCAT	GCGGTGTG	UDI 58	CTGACAGT	AATACAGG	U	DI 82	CTTCACGA	GCTAGAGT
UDI 11	GAGCTCTA	GTGGCGAA	UDI 35	GAACTGGC	CGATACTA	UDI 59	GAATTGAA	TACTCTGT	U	DI 83	TCAGTGAG	CGTGCAGG
UDI 12	CTATAGGA	GTGGATAC	UDI 36	CGGTGAGA	CAGCTACA	UDI 60	CGTCGTCA	TGGTGGTA	U	DI 84	CTTCTTAA	CGTAGTTC
UDI 13	AAGAGAGC	AATATAAC	UDI 37	AAGACATA	AATATGCT	UDI 61	AAGTAAGT	AATAGATT	U	DI 85	AAGTTATC	AATTAATG
UDI 14	TTATAGCG	TTCTAGGT	UDI 38	TTATGTAT	TTCTCCGC	UDI 62	TGACGGAA	TTCTCTCA	U	DI 86	TGACCGCG	TTAATTCA
UDI 15	GAGCTAAG	AGATTGTG	UDI 39	GAACAGAT	CTATATTG	UDI 63	GAATACGG	GCACACAA	U	DI 87	TCAGACTT	TGTGCAAC
UDI 16	CGAAGCCA	CAATCCGT	UDI 40	CTTGGCCT	CAGGAAGG	UDI 64	CTTATCAG	TGTGAGTC	U	DI 88	CTGCATCA	CGATCGTT
UDI 17	TTGTGGCT	TTACTTAC	UDI 41	GAACATTC	GCCGTGCA	UDI 65	TCCGCGTC	GTCGCAGG	U	DI 89	TCATGCGT	CCGACGAC
UDI 18	CGCGAGAC	TTGTCGAC	UDI 42	CTGATATA	GAGTTGCG	UDI 66	CTGAGTGC	GCATCACA	U	DI 90	CTTGCGGA	CTCCGCGC
UDI 19	GAGATCGG	AAGGAGCG	UDI 43	GAAGCGAG	AACCTCAC	UDI 67	TCCTAACG	TCCAACTA	U	DI 91	TCAATCCT	GCCACCTC
UDI 20	CGCACTTA	CTCGAAGC	UDI 44	CGGCCTCT	AACCATGG	UDI 68	CGAGATAA	TGGTCACA	U	DI 92	CCGGCTGA	CCTCTGGA
UDI 21	GATGTCAG	GTTAGAAC	UDI 45	GAAGTCGA	TCACTGTT	UDI 69	TCGCGATT	CCAAGCAC	U	DI 93	TGCCGCCG	GACACAGA
UDI 22	CTACTTCG	CGAACTGT	UDI 46	CGGCCATG	GACTGAGC	UDI 70	CTAGTTAT	CCTTGATG	U	DI 94	CAGAGCTC	GCAATTGC
UDI 23	GATTACTC	CATGTCTC	UDI 47	GAAGTTAC	GTCCAAGT	UDI 71	TCGCACTC	GATGGTAA	U	DI 95	TGCGATAG	CACACATG
UDI 24	ACTCAGAC	CGACTATA	UDI 48	CTTAGAGA	CCGATGCG	UDI 72	CTATTATC	CCTCCGAG	U	DI 96	CCATTGAC	CAGATTCT

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 perkinelmer.com

